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ABSTRACT

An analytic solution to a particular Marshak problem is given.

The radiative transfer model used is the gray, non-equilibrium diffusion

approximationwhich allows the radiation and material fields to be out

1 of equilibrium. This solution should be useful as a reference problem

for validating time dependent radiative transfer computer codes, as well as

investigating the convergence, as a function of space and time step size,

for such codes. The coupling of the radiation field to the material field

1 in a multigroup code, a difficult numerical problem, can also be tested

! against this solution. Typical numerical results are given for surface
j:~

quantities, integral quantities, and the distribution of radiative energy.

and mate rial temperature as a function of space and

“Work performed under the auspices of the
U.S. Department of Energy by the Lawrence
Livermore Laboratory under contract number
W-7405-ENG-48.”
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1. Introduction. .——.——

A difficult class of engineering problems is time dependent radiative

transferin whichthe radiationand materialenergy fields are allowed to

interact. The difficulty stems from the underlying complexity of the equa-

tion of radiative transfer, the need to include the energy balance equation

for the material in the problem description, and the generally complex

dependence of the material properties (opacities and heat capacity) on the

relevant independent variables.

Because of this complexity, most, if not all, realistic problems of

this type must be solved numerically. Nany computer codes exist in the

engineering and scientific community for such problems, including the ef-

fects of hydrodynamic motion if this is an important effect. As with all

ccni]puter codes’, it is desirable (essential) to have benchmark or referenc~

problems for which analytic solutions are known for purposes of verifying

the numericalproceduresused. In addition, such analytic solutions allow

cme to test the sensitivity of the code to’changes in mesh size (in space

or time) in an

for this class

plexity of the

unambiguous way. Such test problems are almost nonexistent

of radiative transfer problems, again because of the com-

underlying equations.

One semi-analytic solution that does exist in the literature is the

(1)
so-called Marshak wave problem . In the heat transfer context, this

corresponds to an initially cold halfspace of material with radiation in-

cident upon the surface. Under the simplifications introduced by Marshak,

this problem admits a similarity solution which reduces the problem to the

so]l]tion of a second order nonlinear ordinary differential equation. This

equation cannotbe solved analytically,

ohtaincd by Kass and O’Keeffe
(~)

in the

but numerical results have been

context of chemical diffusion.
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The solution exhibits a wavefront which penetrates the slab with the

characteristic square root of time behavior. To obtain this semi-

nnalytical solution, Marshak made the assumption that the material and

radiationfieldsare in equilibrium;i.e.,the radiationfieldat any

space and time point is Planckian at the local material temperature. This

has the great simplifyingeffectof eliminatingthe equationof transfer

from the problem. }\odernradiative transfer treatments do not in general

make this simplifying assumption. The radiation and material fields are

allowed to develop separately according to a more accurate physical de-

scription, with an interaction term between the two fields which allows

equilibration only when the

equilibrium.

In this paper, we give

non-equilibrium between the

make the problem tractable

‘physicsof the problem dictates such an

a solution to

radiation and

analytically,

the Marshak.wave problem allowin”g

material fields. In order to

we need introduce a specific

dependence of the material heat capacity on the material temperature. We

assume that this heat capacity is-proportional to the cube of the tempera-

ture. Because of this, our solution probably does not correspond to any

interesting physical problem, as does the classic Marshak treatment.

However, our intent is different from that of Marshak. He was inter-

ested in modeling, in a semi-quantitative manner, a particular physical

phenomena. This necessitated simplifying the equations to the point where

a solution was possible, while maintaining as much as possible the essen-

tial physics of the problem. We wish to maintain the underlying equations

and are willing to relax the physical content of the problem to obtain a

detailed solution. Radiative transfer codes are meant to handle an

arbitrary temperature dependence of the heat capacity, and.thus the
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solution presented here should provide a useful test problem for such

codes.

To our knowledge, no other analytic solution, allowing for non-

cquilibrium in a time dependent problem, exists in the literature. We
*

regard the present solution as a first

. problems. Hopefully, other solutions,

can be generated in the future to give

step in generating useful test

involving more detailed physics,

additional test problems against

which radiative transfer codes can be validated.
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2. The Problem and General Solution.—.— —. —.- .-—._ ..—— ____

Ne consider a semi-infinite purely

The medium is ass{lmed to be homogeneous

absorbing medium occupying O < z < ~.—

and, at t=O, to be at a zero tempera-

ture with no radiation field present. Commencing at t=O, we allow a time
e

independent radiative flux to impinge upon the face at z=O. We wish to

. compute, as a function of space and time, the material temperature and the

radiation field. Hydrod:,mamicmotion and heat conduction are as~~ed un-

important, and the radiative transfer i.s modeled as a one group (gray)

process in the diffusion (P-1 or two T) description. The equation of trans-

fer i.sthen(3)

~Er(z,t) aEr(z,t)

“--”—- & [3~;~-~z––l = cK(T)[aT4(z,t)-Er(z,t)],
%

(1)

where z is the spatial vax-i~ble, t i,s the t~~oral vari~ble, E~(z,t) is the

radiation energy density, T(z,t) is the material temperature, K(T) is the

absorption cross section

radiation constant. The

(opacity), c is

Marshak (Milne)

~Er(O,t) o

Er(O,t)-
%-[+0;0? “-“-~i——= ~

where Fin= is the flux incident upon the

boundary condition

Er(~,t) = O .

the speed of light, and a is the

boundary condition on Eq. (1) at

F.
lnc ‘

medium at z=O. At z=~, we have the

(3)

* The initialconditionis that of no radiationpresent,i.e.,

Er(z,O) = O .
.

(4)

The material energy balance equation is

CV(T) ‘–l\&~ = cK(T)[Er(z,t) - aT4(z,t)] , (5]

6
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where CV(T),the heat capacityper unit volume,is relatedto the material

energydensityEm by

J
T

Em(T]= dT’cv(T’).
0

(6)

The initialconditionon Eq. (5) is takento be

T(z,O)= O . (7)

Equations(1) and (5),togetherwith the boundaryand initialcondi-

tions,Eqs. (2), (3), [4),and (7),constitutetwo equationsfor the two

unknownsEr(z,t]and T(z,t). For a generaltemperaturedependenceof K(T)

and CV(T),theseequationsare clearlynonlinear. However,if we consider

the classicradiativetransferproblemof K independentof temperature,and

furtherassumeCv proportionalto T3, i.e.,

3c =aT,v (8)

then our equations become linear in Er and T4, and we can use classic

analysisto obtaina solution. Beforeproceedingwith the solution,we

recastthe equationsinto dimensionlessform. We write the incidentflux

in termsof an effectivetemperatureeinc as.

F. = ae:nc ,
lnc

(9)

whereu is the Stefan-Boltzmannconstant,a = at/4. Additionally,we define

a radiationtemperature9(z,t)by the equation

Er(z,t) = ae4(z,t) . (lo)

We introducethe dimensionlessindependentvariables

X:fiKZ, (11)

(12)
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and definenew dependentvariablesas

U(X,T)~ [~14 1
inc

V(X,T) = [p14 ●

inc

Then Eqs. (1) and (5) take the dimensionlessform

01
ax’

wherewe have defined

= 160
&.—.

ca

The boundaryand initial

V(X,T) ,

the parameter

these new variables

conditions,Eqs. (2), (3), (4),and

u(~, T) = U(x,o)= V(x,o)= o .

(13)

(14)

(15)

(16)

(17)

(7) becomein

(18)

(19)

Equations(15]through(19)are the equationswe shall solve.

Settingthe parametere to zero correspondsto the “no retardation”

approximateion. That is, &=O is equivalentto assumingthat,as far as
.

the radiativetransferprocessis concerned,the speedof lightis infinite.

This impliesthat the radiationfieldinstantlycomes into a steadystate

distributionwith the materialtemperaturedistributionat any time t. It

shouldbe emphasizedthat c=O does not implyU=V (Er=Em),becauseEq. (1S)

containsa spatiaistreamingterm. Only in the absenceof spatialgradients

does the c=O approximationimplyU=V, i.e.,completethermodynamicequilibrium.
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The classic Maishak treatment corresponds to setting6=0 and ignoring

spatial gradients in the equation of transfer, thus obtaining U=V, or,

equivalently, assuming the radiation field to be Planckian at tl}elocal

temperature.

Before proceeding with the solution, it may be useful to say a few

v;ordsabout the radiative transfer model we have employed. Rather than

dealing with the more complex

of transfer, we have used the

tion, couw]only called the P-1

integro-differential or integral equation

lo}~estorder spherical harmonic approxima-

or 2-T diffusion approximation. One }iOUld

cxIpct, and experience bears it out, that for optically thick systems

the P-1 approximation should be quite accurate. This is the case for ,

the Marshak wave problem. Thus our solution is a rigorous test problem

for ccxles using the P-1 approximation, but in addition provides a reason-

ably good test problem for transport codes as well. We have also used

a one group, or gray, radiative transfer description. Again, for opti-

cally thick systems such a description is often adequate. However, e}en

the multigroup aspect of multigroup codes can be partially tested against

the solution given here. If the code is used in a multigroup mode to

compute a problem in which the opacity is, in fact, independent of fre-

quency, then a one group description is rigorously correct, and the pre-

sent test problem gives the analytic result. This is particularly impor-

tant since the coupling of the radiation field to the material is a

difficu~t aspect of rnultigroupcodes. This aspect can be tested, as just

described, against the analytic solution given here. ‘

To solve Eqs. (15) through (19), we introduce the Laplace transform

1(s) of a function f(~) by the definition

9
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m

?(s) z d’re-sTf(T)..
o

(20)

Takingthe Laplacetransformof Eqs. (15),(16), (18),and (19)gives

CSG(X,S)-
a2fi(x,s]

= i(x,s)- G(x,s) , (21)
ax2

Si(x,s)= ii(x,s)- ii(x,s),

ii(o,s) -

ii(-,s)=

Equation(22)

i(x,s)=

0.

gives

(-&.)xx, s) ,

and using this in Eq. (21)gives

wherewe have

= 132(S)G(X,S),

defined

(22)

(23)

(24)

(25)

(26)

62(S)E (+)[l+C(S+l)] . (27)

The solutionto Eq. (26)subjectto the boundaryconditionat x-, Eq. (24),

is

ii(x,s)= ~(s)e-fwx ●

The constantK(s) is determinedfrom the conditionat x=O, Eq. (23).

find

fie-@(s)x
ii(x,s) =

s[6+213(s)]‘

and Eq. (25)then gives

(28)

We

(29)

10



fie-lxs)x
i?(x,s) =

s(s+l)[fl+2fl(s)]“
(30)

The solutionsfor U(X,T)and V(X,T)followfrom Eqs. (29)and (30)by the

Laplaceinversiontheorem

f(T) =*
!

dsesT~(s),
c

[31)

where the integrationcontourC is a lineparallelto the imaginarys axis

to the rightof all the singularitiesof ~(s).

From the l’arges and smalls limitsof Eqs. (29)and (30]~relating

thse to the smallT and largeT limitsof u(x,T) and v(x,T),respectively,

we have

U(x,o]= V(x,o)= o , (32)

U(X,T) + V(X,T) + 1 , (33)
T* r-

wherewe have used the theorems

lim[s?(s)] = lim[f(r)] , (34)
S* T*

lim[sF(s)]= lim[f(T)]. (3s)
S+O ‘pm

Equation(32)is just a restatementof the initialcondition[seeEq. (19)],

and Eq. (33)

temperatures

flux.

statesthat at infinitetime,both the radiation

approacha constant,equalto the temperatureof

and material

the impinging

11
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3.

Eqs.

The Solutionfor E=O

lkcause of the complexs

(27), (29), and (30), we

case. We reexamine,for e=O,

r-,

dependenceof fi(x,s) “and~(x,s) as givenby

initiallyconsiderthe e=O, no retardation,

the limitsat T=O and T-. We find,at

U(x,-r)+ v(x,T) + 1 , (56)
T+W JpaJ

just as before. However,for T=O we find a differentbehaviorsince (3(s)

behavesdifferentlyas S+W for E=O, i.e.,f3[oD)= 1 for c=O. This gives

T%-x
U(x,o)= —

(n+2) ‘
(37]

V(x,o) = o . (38)

That is, the materialfieldis still zero at T=O, consistentwith the ini-

tial condition,but the radiationfieldis not zero at T=O for c=O. This

is becausethe radiationfield,in the absenceof retardationeffects,im-

mediatelycomes to a steadystateconsistentwith a zeromaterialfield,

but correspondingto an incomingfluxof radiation. Equation(37)is just

the steadystate solutionof the P-1 approximationundertheseconditions.

Thus for a small,but non zerovalueof E, the

exhibita boundarylayerin the time variable,

time behaviorfor smalltimes.

If we examinethe surfacebehaviorof the

solutionfor u(x,~)will

leadingto a rapidlyvarying

radiationand material

fieldsas a functionof time,we need invert,using

B(s) = [&# (39)

in Eqs. (29)and (30)at x=O,

em
ii(o, s) =

S[n m + 2G] ‘
(40)

12



.

●

✎

$EJGi
i(o,s) = (41)

S(:+l)[m m + 26] “

The singularitiesof fi(O,s) and ;(O,s) are clearlyidentical,and include

branchpointsat s=O and s=-1. We definethe properbranchesas those

which give a positivesquareroot for s lyingon the real positiveaxis.

Extendingboth branchcuts alongthe negativereal axis,we have a composite

branchcut for -1 ~ s ~ O. The functionsare analyticon the negativereal

axis for s < -1, the effectsof the two branchcutshavingcancelled. These

functionsalso have a

thispole lieson the

The Laplaceinversion

simplepole at s=O. A secondpole existsat s=3, but

non physicalRiemannsheetand need not be considered.

integralfor either

verticalline in the righthalf s plane.

half plane,one finds,as usual,that the

~(O,s)or ~(O,s)is then a straight

Closingthis contourin the left

largesemicirclegivesa zero

contribution,with contributionscomingfrom the branchcut and the pole at

S=o. Defininga new integrationvariable5=-S, we find,omittingthe alge-

braic detail,

(42)

(43)

These integralsmust be performednumerically. To removethe integrable

singularityat 5=0 in Eq. (42),we change

to ~=~2,and find

integrationvariablesaccording

* (44)

a form suitablefor numericalintegration.Equation(43)has integrable

singularitiesat both ~=0 and 5=1. To removethese,we note

13



(45)

and change integrationvariablesaccordingto ~=q2 in the firstterm and

l-C=q2in the second. This gives.
.

*

4fi

1

2%
V(O,T) = 1 - ~ ldn (1-n ) e-Tn2

o (3+r12)

4&

1

2%
-—

Tr
ldn (1-n ) e-T(l’-q2),

0 (4-q2)

or,

4JS

J

2+
V(O,T) = U(O,T) - ~ ldn (1-n ) JTm12) ,

0 (4-q2)

(46)

(47)

which shows,as expectedon physicalgrounds,that the materialfieldalways

lagsbehindthe radiationfield. Both Eqs. (44)and (46)can be integrated

analyticallyfor T=O, and one findsresultsconsistentwith Eqs. (37)and

(38),providinga partialcheckon these integralexpressions.

The fluxof radiationis givenby

aEr(z,t)
F(z,t) = -+~,

or, if we introducethe dimensionless

W(.,T) SW
F. ‘
lnc

we have

W(x,’r)= - 4 auyx>~) .

a
.

Laplacetransformingthis result,and

for &=O that the Laplacetransformof

;(0,s)= 4

~+zs”

(48)

variablesx and T, and define

(49)

(.50)

using Eq. (29) for ~(x,s),we find

the surfaceflux is givenby

(51)

14
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By examining the small and large s behavior of Eq. (15), we find

w[(), T) + O , (52)
.~.*

4
W(o,o) = -—- .

EG+2
(53)

The infinite time limit is just a manifestation that at infinite time

the entire halfspace is at a constant temperature with a uniform radia-

tion field [see Eq. (33)] and hence there is no gradient and no flux.

At T=O, physically one should find that all of the impinging radiation

is absorbed, with no reradiation because the material is cold. That is,

we should have w(O,O) = 1, whereas Eq. (53) states

W(o,o) = 1.0718 (54)

This 7% error is associated with the Marshak boundary condition applied
.

to the P-1 approximation, Eq. [2), as has been discussed in detail recent-

~y(4)
.

For a general value of T, we invert Eq. (51) in a

our previous inversions of ~(O,T) and ;(O,T). In this

is no pole at s=O. Ne find

manner similar

case, however,

to

there

(55)

We note the similarity of this result to that for u(O,T) as given by Eq.

,(44). Combining these two results, we have

U(o,’r)+ ; w((),T)= 1 , {56)

which is just a restatement of the Marshak boundary condition, Eq. (18),

as can be seen by using the definition of w(x,T), Eq. (50), in Eq. (56).

Of perhaps more interest than these surface quantities are the

integrated radiation and material energies in the slab as a function of

~j]ne. We define these integral quantities as

15
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*

.

and

1
ao aO?

&’r(T] s dzEr(z,t) = (—
~

~) ~Wdxu(x, T) ‘ ,
0

We definedimensionlessintegralenergiesor(t) and $m(T] as

where

(57)

(58)

{59)

(60)

(61)

(62)

~(o) is the radiationenergyin a slab of thicknessone diffu-Physically, r

Sion length(fiK)-lwith a uniformradiationtemperaturef3inc.Likewise,

8[0) is the materialenergyin a slab of thicknessone diffusionlengthm

with a uniformmaterialtemperatureeinc. CombiningEqs. (57)through(62)

we have

J
m

*=(T) = dxu(x,T),
0

(63)

!

w

win(T) = dxv[x,r).
0

(64)

To computethese integrals,we LaplacetransformEqs. (63)and (64)
9

use Eqs. (29)and (30)for fi(x,s)and ~(x,s),settingE=O, and performthe

indicatedintegralsover x. We find

16



(65)$=(s) =
n(s+l)

s

s(/~ + 2s)

●

✎

☛

and

jm(s) = e

s(-+2s)

Examiningthe larges (smal1

v=(o) = = ,
a+2

*m(o) = o ,

(66).

T) limitof theseexpressions,we find

(67)

(68]

which are correct[seeEqs. (37)and (38)]. For small s we find

jr(s) + $m(s) + S-312
S+Q .54

(69]

(70)

and

the

hencewe have

.

familiarfi dependence.

To obtainthe resultsfor a generalT, we once againclose the inversion

contoursin the lefthalf plane,wrappingaroundthe branchcuts covering

-1 < s < 0, and integratingarounda smallcirclecenteredat s=O. We note

that near s=O both $r(s) and ~m(s)behave like s‘3’2 [seeEq. (69)],and care

must be taken in evaluatingthe integralsnear s=O. In particular,both the

branchcut contributionsand the smallcirclecontributionseparatelydi-

verge. Thus one must integratethebranch cut contributionsfrom -1 to -6,

integratearounda smallcircleof radius6 centeredat s=O, analytically

combinethe results,and then let 6 go to zero. The separatesingularities

in 6 cancel,and the resultingcombinedintegralsare finite. As earlier,

one must thenmake a changeof variablesto put the resultsin a form

suitablefor numericalintegration.Omittingthe considerablealgebraic

17



detail,we find

*

●

✎

For T=O, analyticintegrationof Eqs. (71)and (72)reproducesEqs. (67)

and (68),and for largeT, Eqs. (71)and (72)give the properasymptotic

behavior,Eq. (70). Two additionalcheckson the accuracyof Eqs. (71)and

(72)can be made. First,it can be shown that thesetwo resultssatisfy

a~m(~)
M =

which is just

$=(T) - *m(T) , (73)

the overallenergybalanceequationfor the material,ob-

tainedby integratingEq. (16)over all x. Secondly,it can also be shown

that thesetwo results,togetherwith the resultfor w(O,T)givenby Eq. (55),

satisfy

a-~w(o,T) = I#m(T) - $r(T) , (74)

which is just the integralover x of the equationof transfer,Eq. (15),

with &=O.

Numericalresultsfor the threesurfacequantitiesu(O,T),v(O,T)and

‘w(O,T),given by Eqs. (44),(46),and (55),as

quantities$r[r)and $m(T),givenby Eqs. (71)

Table I. The valueswere computedby dividing

well as the two integral

and (72),are given in

the integrationrange

O < rI< 1 for each integralinto N equal intervals,and performinga 16—-

point Gaussquadraturein each interval. N was successivelydoubleduntil

the desiredaccuracywas achieved. The valuesin Table I were obtainedby

18
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+

,

.

specifyinga fractionalabsoluteerrorof 10‘S for each integral. The

values givenare believedto be accurateto the numberof digitsgiven.

Finally,one can, by invertingthe transformsU(X,S)and v(x,s],ob-

tain resultsfor

The resultsare

the radiationenergyand materialtemperaturefields.

and

J
~

4fi ldq[#l-q -T112
V(x,-c)= 1 - y

o
~]cos(~) e
(3+?l)

/“l-nz

J
1 “fi ,g2x

4J5
dn[

-T(l-~2)-—
m

0

+]cos(y) e

(4-Tl)

(7s)

(76)

Numericalresultsfor representativevaluesof x and T amgiven in Table II.

The same integrationschemeas previouslydescribedwas used to compute

theseintegrals. However,the oscillationsin the integranddue to the

trigonometricfunctionsmade these integralsextremelyhard to converge.

A looserconvergence

valuesof N as large

-4
criteriaof 10 was used, and even then, for smallT,

as 16,000were required.

19



4. The Solutionfor e#O .

,

.

.

One couldrepeatthe inversionanalysisfor

a straightforwardway. The algebra,however,is

For this reason,we restrictedour attentionfor

tities$r(T] and $m(T). These quantitiesare of

a non-zerovalueof ~ in

very much more complex.

&#O to the integralquan-

primaryinterestin most

radiativetransferproblems. LaplacetransformingEqs. (63)and (64),the

definingequationsfor $r(T)and $m(’r),using Eqs. [29)and (30] for ~(x,s)

and ~(x,s),integratingover x, and using Eq. (27)for 6(s)yields

Jr(s) =
n(s+l)

S3’2[1+C(S+1)] 1/2) ‘1/2{/”+ 26[1+s(s+1)1

,.
and

$m(s) =
43

S3’2[1+E(S+1)]
1/2] “llz{~~+ 2A[1+C(S+1)I

Examiningthe larges (smallT) limit of theseequations,we find

*r(o) = $Jo) = o ,

the

and

physicallycorrectlimits. For smalls we find

ir(s)+ ire(s) +
S+O S+)*’

hencewe have the largetime behavior

1/2

$r(~) + $m(T) + 2[-] .
T+CCI ~+m

Again we find the expectedE dependencefor largetimes.

(77)

(78]

(79)

(80)

(81)

To invertEqs. [77)and [78),we need identifythe singularitiesof

the integrands. These singularitiesare the same for each integral,and

includebranchpoints at s=O, s=-1, and s=-(l+c)/c.l%e branchesto be

used in the integrationare againdefinedas thosewhich give positive

squareroots for s lyingon the real positiveaxis. Extendingall three

branchcuts along the negativereal axis,we find cancellationof branch

20



cuts for -(l+s]/e~ s < -1. Thus we have effectivebranchcuts on the inter-

vals -w <s< -(l+E)/c and -1: S :0. As for the c=O case,care must be

takenin integratingnear s=O sincethe integrandsvary as s
-3/2 near s=O.

In addition,the integrandseach have two simplepoles at

However, both of thesepoles are easilyshownto be on the nonphysical

Riemann sheet,and hence can be ignored.,,

Omittingthe straightforward,but tedious,algebraicdetail,the

resultsare

J

1 2
~r(?) =A dqgr(r,@e-Tm

?lm o

and

where

[l ~211/2

h=(n) =
[l+s(l-m2)]3/2[3+(1+4012-4G1141 ‘

hm(nl = (1-q2)hr(rt),

(83)

(84)

(85)

(86)

~(-Vl) = z-c+ l+’$etl-;z)
3+(4c+l)q -4&r14

3

+ [l+@l12)]l/J [3+(4c+l)112-4En4]{[l+E(l-n2)]1’2+[(1+E)(1-n2)]1’21 ‘

(87)
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, >,.,“,”...”,----”

,..

(88]

Numericalresultswere obtainedfrom theseequationswith the previously

describedintegrationroutine,using a fractionalconvergencecriteria
4 -5

of 10 . These resultsare given in Tables III and IV for a few representa-

● tive values of s. We note, as expected, that the material field always lags

behindthe radiationfield.

●

●
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wave

time
a

Concluding Remarks-—.—

We have presented in this paper an analytic solution to the Marshak

problem which should be a useful reference solution for validating

dependent radiative transfer computer codes. The solution was ob-

tajned”inthe formof finiteintegralswhichhad to be evaluatednumeri-

S Typicalnumericalresultswere givento an accuracyof 10-4tally. for

the

and

pointwise, in space and time, distributions of the radiative energy

-5materialtempe~atures,and 10 for surfacequantitiesand integral

energy content.

It is hoped that in the future other such reference solutions can be

generated. The goal should be to find solvable problems that represent

the relevant physics in more detail than the solution given here. This

goal may be elusive, however, due to the complexities, including compli- ‘

cated equations, complicated functional forms, and nonlinearities, of the

underlying equations describing the time dependent radiative energy field

and its interaction and energy exchange with the material field.

●

✎
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TABLE I

Surfaceand Integral Quantities for c = ()

T U{O,T) V(O,T] W(O,T) *r(T) *m(T)

0.01 0.46S34 0.00462 1.0693 0.46767 0.00463

0.02 0.46657 0.00921 1.0669 0.47122 0.00926

0.04 0.46903 0.01829 1.0619 0.47831 0.01847

0.07 0.47266 0.03167 1.0547 0.48891 0.03222

0.1 0.47624 0.04475 1.0475 0.49947 0.04588

0.2 0.48782 0.08638 1.0244 0.53429 0● 09073

0.4 0.50941 0.16120 0.98117 0.60241 0.17754

0.7 0.53833 0.25547 0.92334 0.70098 0.30116

1.0 0.56368 0.33230 0.87264 0.79561 0.41774

2.0 0.62890 0.50386 0.74220 1.0869 0.76553

4.0 0.70709 0.65960 0.58581 1.S871 1.3335

7.0 0.76802 0.74905 0.4639S 2.2074 2.0065

10. 0.80238 0.79164 0.39524 2.7321 2.5610

20. 0.85732 0.85362 0.28535 4.1198 3.9962

40. 0.89806 0.89676 0.20388 6.1443 6.0560

70. 0.92260 0.92204 0.15481 8.4091 8.3421

100 0.93512 0.93480 0.12975 10.232 10.176

200 0.95403 0.9s391 0.09194 14.876 14.836

400 0.96746 0.96742 0.06508 21.464 21.436

700 0.97539 0.97537 0.04922 28.738 28.717

1000 0.97941 0.97940 0.04119 34.560 34.543

10000 0.99349 0.99348 0.01303 111.69 111.69
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TABLE II

0.1

0.4

1.0

4.0

10.

40.

100

0.1

0.4

1.0

4.0

10.

40.

100.

Distributionsfore = O

0.1

0.4330

0.4686

0.S270

0.6820

0.7853

0.8992

0.9295

0.4

0.3253

0.3646

0.4298

0.6097

0.7349

0.8629

0.9127

U(X, T]

1.0

0.1837

0.2200

0.2834

0.4801

0.6380

0.8106

0.8792

4.0

0.0146

0.0168

0.0310

0.1162

0.2684

0.5664

0.7159

10.

0.0002

0.0034

0.02s2

0.2176

0.4314

40.

0.0043

0.1

0.0406

0.1472

0.3073

0.6320

0.7737

0.8878

0.9292

0.4

0.0302

0.1122

0.2427

0.5S46

0.7207

0.8611

0.9122

V(X,T)

1.0

0.0169

0.0651

0.1511

0.4214

0.6195

0.8082

0.8785

4.0

0.0008

0.0042

0.0133

0.0877

0.2460

0.5614

0.7146

10.

0.0021

0.0206

0.2120

0.4291

40.

0.0042



TABLE 111

IntegratedRadiationEnergyYr(T) for c#O

-r

0.01 0.06822 0.01937 0.00809 0.00210 0.0008S 0.00021 0.00008

0.02 0.12147 0.03682 0.01569 0.00413 0.00168 0.00042 0.00017

0.04 0.20320 0.06826 0.03002 0.00809 0.00332 0.0008S 0.00034

0.07 0.28807 0.10929 0.04990 0.01382 0.00s73 0.00147 0.00059

0.1 0.34S87 0.14495 0.06832 0.01938 0.00809 0.00210 0.00085

0.2 0.44901 0.23817 0.12215 0.03688 0.01570 0.00413 0.00168

0.4 0.S3860 0.36009 0.20747 0.06862 0.03008 0.00809 0.00332

0.7 0.63451 0.47682 0.30489 0.11093 0.05020 0.01385 0.00573

1.0 0.72438 0.56563 0.38332 0.14906 0.06910 0.01943 0.00810

2.0 1.0008 0.81135 0.59159 0.2S924 0.126S4 0.03721 0.01S76

4.0 1.47s7 1.2260 0.928S4 0.4431s 0.22736 0●07030 0.03038

7.0 2.0649 1.7417 1.3480 0.67694 0.3S986 0.11614 0.0S116

10. 2.5638 2.1793 1.70S8 0.88071 0.47837 0.1s886 0.07096

20. 3.8839 3.3408 2.6616 1.4400 0.81408 0.28676 0.13213

40. S.8117 S.0420 4.0710 2.2889 1.3429 0.S0338 0.24056

70. 7.9696 6.9498 S.6S80 3.2630 1.9664 0.77493 0.38264

100 9.7070 8.4873 6.9393 4.0S72 2.482S 1.0089 0.s0913

200 14.133 12.407 10.211 6.1007 3.8278 1.6436 0.86SS7

400 20.414 17.971 14.861 9.022S S.7726 2.5968 1.4240

700 27.349 24.117 19.999 12.261 7.9403 3.6834 2.0797

1000 32.900 29.036 24.113 14.857 9.682S 4.S664 2.6213

10000 106.44 94.221 78.64S 49.325 32.892 16.516 10.148

6
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L E

T

0.01

0.02

0.04

0.07

0.1

0.2

0.4

0.7

1.0

2.0

4.0

7.0

10.

20.

40.

70.

100

200

400

700

1000

10000

TABLE IV

Integrated Material Energy $m(~) for c#O

0.1

0.00036

0.00131

0.00454’

0.01176

0.02083

0.0s747

0.13771

0.25490

0.36560

0.69576

1.2349

1.8741

2.4011

3.7664

5.7276

7.9057

9.6534

14.095

20.387

27.329

32.883

106.44

0.4

0.00010

0.00038 ~

0.00142

0.00402

0.00767

0.02ss0

0.07636

0.16676

0.25953

0.54559

1.0158

1.5746

2.0365

3.2372

4.9677

6.8933

8.4399

12.373

17.948

24.099

29.021

94.217

1.0

0.00004 I

0.00016

0.00061

0.00178

0.00348

0.01233

0.04058

0.09765

0.16232

0.38124

0.75866

1.2119

1.5890

2.5761

4.0093

5.6108

6.8998

10.183

14.841

19.984

24.101

78.641
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4.0

0.00004

0.00016

0.00048

0.00096

0.00357

0.01263

0.03301

0.05847

0.15728

0.3520S

0.60092

0.81401

1.3893

2.2513

3.2340

4.0327

6.0831

9.0100

12.251

14.849

49.322

10.

0.00001

0.00006

0 ● 00020

0.00040

0.00150

0.00543

0.01459

0.02642

0.07489

0.17770

0.31659

0.4394s

0.78321

1.3192

1.9477

2.4665

3.8162

5.7643

7.9339

9.6772

!2.891

40.

0.00001

0.00005

0.00010

0 ● 00039

0.00144

0.00395

0.00728

0.02156

0.05405

0.10106

0.14476

0.27467

0.49337

0.76657

1.001s

1.6380

2.S926

3.6802

4.S637

16.S15

1100

1
0.00002

0.00004

0.00016

0.000s9

0.00162

0.00301

0.00906

0.02320

0.04430

0.06440

0.12625

0.23544

0.37818

0.50510

0.86236

1.4215

2.0777

2.6196

10.147


